Hessenberg matrices and the generalized Fibonacci-Narayana sequence
نویسندگان
چکیده
منابع مشابه
On The Generalized Fibonacci And Pell Sequences By Hessenberg Matrices
In this paper, we consider the generalized Fibonacci and Pell Sequences and then show the relationships between the generalized Fibonacci and Pell sequences, and the Hessenberg permanents and determinants. 1. Introduction The Fibonacci sequence, fFng ; is de ned by the recurrence relation, for n 1 Fn+1 = Fn + Fn 1 (1.1) where F0 = 0; F1 = 1: The Pell Sequence, fPng ; is de ned by the recurrence...
متن کاملMore on the Fibonacci Sequence and Hessenberg Matrices
Five new classes of Fibonacci-Hessenberg matrices are introduced. Further, we introduce the notion of two-dimensional Fibonacci arrays and show that three classes of previously known Fibonacci-Hessenberg matrices and their generalizations satisfy this property. Simple systems of linear equations are given whose solutions are Fibonacci fractions.
متن کاملDeterminants and permanents of Hessenberg matrices and generalized Lucas polynomials
In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...
متن کاملCounting Determinants of Fibonacci-hessenberg Matrices Using Lu Factorizations
is a Hessenberg matrix and its determinant is F2n+2. Furthermore, a Hessenberg matrix is said to be a Fibonacci-Hessenberg matrix [2] if its determinant is in the form tFn−1 + Fn−2 or Fn−1 + tFn−2 for some real or complex number t. In [1] several types of Hessenberg matrices whose determinants are Fibonacci numbers were calculated by using the basic definition of the determinant as a signed sum...
متن کاملA Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2015
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1507557r